
www.manaraa.com

Towards Tamper Resistant Code Encryption:
Practice and Experience

Jan Cappaert1, Bart Preneel1,
Bertrand Anckaert2, Matias Madou2, and Koen De Bosschere2

1 Katholieke Universiteit Leuven
Department of Electrical Engineering, ESAT/SCD-COSIC

Kasteelpark Arenberg 10
B-3001 Heverlee, Belgium

{jan.cappaert,bart.preneel}@esat.kuleuven.be
2 Universiteit Gent

Department of Electronics and Information Systems, ELIS/PARIS
Sint-Pietersnieuwstraat 41

B-9000 Gent, Belgium
{banckaer,mmadou,kdb}@elis.ugent.be

Abstract. In recent years, many have suggested to apply encryption in
the domain of software protection against malicious hosts. However, little
information seems to be available on the implementation aspects or cost
of the different schemes. This paper tries to fill the gap by presenting our
experience with several encryption techniques: bulk encryption, an on-
demand decryption scheme, and a combination of both techniques. Our
scheme offers maximal protection against both static and dynamic code
analysis and tampering. We validate our techniques by applying them
on several benchmark programs of the CPU2006 Test Suite. And finally,
we propose a heuristic which trades off security versus performance, re-
sulting in a decrease of the runtime overhead.

1 Introduction

In the 1980s application security was achieved through secure hardware, such
as ATM terminals, or set-top boxes. Since the 1990s, however, secure soft-
ware has gained much interest due to its low cost and flexibility. Nowadays,
we are surrounded by software applications for online banking, communication,
e-voting, . . . As a result, threats such as piracy, reverse engineering and tamper-
ing have emerged. These threats are exacerbated by poorly protected software.
Therefore, it is important to have a thorough threat analysis (e.g., STRIDE [10])
as well as software protection schemes. The techniques discussed in this paper
protect against reverse engineering and tampering.

The goal of encryption is to hide the content of information. Originally, it
was applied within the context of communication, but has become a technique to
secure all critical data, either for short-term transmission or long-term storage.
More recently, commercial tools for software protection have become available.



www.manaraa.com

These tools need to defend against attackers who are able to execute the soft-
ware on an open architecture and thus, albeit indirectly, have access to all the
information required for execution.

Even though encryption is one of the best understood information hiding
techniques and has been used previously for software protection, little details on
its practical application and performance impact are available. In this paper we
discuss a number of practical schemes for self-encrypting code and report on our
experience. Furthermore, we introduce an on-demand decryption scheme which
operates at function granularity and which uses the hash of other code sections
as the decryption key.

The remainder of this paper is structured as follows. Section 2 describes soft-
ware security and its threats. Section 3 provides an overview of related work. In
Sect. 4 we discuss our on-demand code decryption scheme. A numerical evalua-
tion is given in Sect. 5. Section 6 discusses several attack scenarios and possible
countermeasures. Finally, conclusions are drawn in Sect. 7.

2 Software Security and Threats

Protecting code from reverse engineering is one of the main concerns for software
providers. If a competitor succeeds in extracting and reusing a proprietary al-
gorithm, the consequences may be major. Furthermore, secret keys, confidential
data or security related code are not intended to be analyzed, extracted, stolen
or corrupted. Even if legal actions such as patenting and cyber crime laws are in
place, reverse engineering remains a considerable threat to software developers
and security experts.

In many cases, the software is not only analyzed, but also tampered with.
Nowadays examples are cracks for gaming software or DRM systems. In a branch
jamming attack, for example, an attacker replaces a conditional jump by an
unconditional one, forcing a specific branch to be taken even when it is not
supposed to under those conditions. Such attacks could have a major impact on
applications such as licensing, DRM, billing and voting.

Before changing the code in a meaningful way, one always needs to under-
stand the internals of a program. If one would change a program at random
places one could no longer guarantee the correct working of the application after
modification. Several papers present the idea of self-verifying code [4,9] that is
able to detect any changes to critical code. These schemes, however, do not pro-
tect against analysis of code. In this paper tries to solve analysis and tampering
attacks simultaneously through encryption.

We focus on software-only solutions because of their low cost and flexibility.
Clearly, code encryption is more powerful if encrypted code can be sent to a
secure co-processor [21]. But when this component is not available, as is the case
on most existing systems, the problem becomes harder to tackle. Essentially, such
a co-processor can be assumed to be a black-box system, where the attacker is
only able to monitor I/O behavior. Software-only solutions against malicious



www.manaraa.com

hosts need to work within a white-box environment, where everything can be
inspected and modified at will.

3 Related Work

There are three major threats to software: piracy, reverse engineering and tam-
pering. In recent years, a number of countermeasures have been treated in the
literature. Software watermarking, for example, aims at protecting software re-
actively against piracy. It embeds a unique identifier into an application such
that it can be proved that a specific copy belongs to a specific individual or
company. As a result, one can trace copied software to the source unless the
watermark is destroyed.

A second countermeasure, code obfuscation, protects against reverse engi-
neering. Code obfuscation aims to generate a semantically equivalent, but less
intelligible version of a program.

The goal of a third countermeasure is to make software more tamper-resistant.
As this paper studies protection mechanisms against malicious analysis and tam-
pering, we will not elaborate on software watermarking.

3.1 Code Obfuscation

Once software is distributed, it is largely beyond the control of the software
provider. This means that attackers can analyze, copy, and change it at will. Not
surprisingly, a substantial amount of research has gone into making this analysis
harder. The developed techniques range from tricks to counter debugging, such
as code stripping, to complex control flow and data flow transformations that
try to hide a program’s internal operation. The goal is to achieve the security
objective of confidentiality. For example, when Java bytecode was shown to be
susceptible to decompilation – yielding the original source code – researchers
began investigating techniques to protect the code [6,13]. Protection of low-level
code against reverse engineering has been addressed as well [24].

3.2 Tamper Resistance

Tamper resistance protects data authenticity where, in this context, ‘data’ refers
to the program code. In ’96 Aucsmith [1] introduced a scheme to implement
tamper-resistant software. Through small, armored code segments, referred to
as integrity verification kernels (IVKs), the integrity of the code is verified. These
IVKs are protected through encryption and digital signatures such that it is hard
to modify them. Furthermore, these IVKs can communicate with each other and
across applications through an integrity verification protocol. Many papers in the
field of tamper resistance base their techniques on one or more of Aucsmith’s
ideas.

Several years later, Chang et al. [4] proposed a scheme based on software
guards. Their protection scheme relies on a complex network of software guards



www.manaraa.com

which can mutually verify each other’s integrity and that of the program’s crit-
ical sections. A software guard is defined as a small piece of code performing a
specific task (e.g., checksumming or repairing). When checksumming code de-
tects a modification, repair code is able to undo this malicious tamper attempt.
The security of the scheme relies partially on hiding the obfuscated guard code
and the complexity of the guard network. Horne et al. [9] discuss a related con-
cept called ‘testers’, small hash functions that verify the program at run time.
These testers can be combined with embedded software watermarks to result in
a unique, watermarked, self-checking program.

Other related research is oblivious hashing [5], which interweaves hashing
instructions with program instructions and which is able to prove to some extent
whether a program operated correctly or not.

However, in some cases, programmers might opt for self-checking code instead
of self-encrypting code, based on some of the following disadvantages:

– limited hardware support: self-modifying code requires memory pages to be
executable and writable at the same time. However some operating systems
enforce a WˆX policy as a mechanism to make the exploitation of security
vulnerabilities more difficult. This means a memory page is either writable
(data) or executable (code), but not both. Depending on the operating sys-
tem, different approaches exist to bypass – legally – the WˆX protection:
using mprotect(), the system call for modifying the flags of a memory page,
to explicitly mark memory readable and executable (e.g., used by OpenBSD)
or setting a special flag in the binary (e.g., in case of PaX). A bypass mech-
anism will most likely always exist to allow for some special software such
as a JVM that optimizes the translation of Java bytecode to native code on
the fly.

– implicit reaction to tampering: if an encrypted code section is tampered
with the program will crash after incorrect decryption, assuming that it is
hard to target bits flips in the plaintext by manipulating the ciphertext.
Furthermore, even if one succeeds in successful tampering with a specific
function, our dependency scheme will propagate faulty decryption along the
functions on the call stack whenever the modified function is verified (i.e. a
decryption key is derived from its code), which will sooner or later make the
program crash as well. However, crashing is not very user-friendly. In the
case of software guards [4,9], detection of tampering could be handled more
technically by triggering another routine that for example exits the program
after a random time, calls repair code that fixes the modified code (or a
hybrid scheme, which involves both techniques), warns the owner about the
malicious attempt through a hidden channel, . . .

3.3 Code Encryption

This section provides an overview of dynamic code decryption and encryption;
one often refers to this as a specific form of self-modifying or self-generating
code. Encryption ensures the confidentiality of the data. In the context of binary



www.manaraa.com

code, this technique mainly protects against static analysis. For example, several
encryption techniques are used by polymorphic viruses and polymorphic shell
code [18]. In this way, they are able to bypass intrusion detection systems, virus
scanners, and other pattern-matching interception tools.

Bulk Decryption. We refer to the technique of decrypting the entire program
at once as bulk decryption. The decryption routine is usually added to the en-
crypted body and set as the entry point of the program. At run time this routine
decrypts the body and then transfers control to it. The decrypting routine can
either consult an embedded key or fetch one dynamically (e.g., from user in-
put or from the operating system). The main advantage of such a mechanism is
that as long as the program is encrypted, its internals are hidden and therefore
protected against static analysis.

Another advantage is that the encrypted body makes it hard for an attacker
to statically change bits in a meaningful way. Changing a single bit will result
in one or more bit flips in the decrypted code (depending on the encryption
scheme) and thus one or more modified instructions, which may lead to program
crashes or other unintended behavior due to the brittleness of binary code.

However, as all code is decrypted simultaneously, an attacker can simply wait
for the decryption to occur before dumping the process image to disk.

On-demand Decryption. In contrast to bulk decryption, where the entire
program is decrypted at once, one could increase granularity and decrypt small
parts when they are needed at run time. Once they are no longer needed, they can
be re-encrypted. This technique is applied, a.o., by Shiva [14], a binary encryptor
that uses obfuscation, anti-debugging techniques, and multi-layer encryption to
protect ELF binaries. Viega et al. [23] provide a related method to write self-
modifying programs in C that decrypt a function at run time.

On-demand decryption overcomes the weaknesses of revealing all code in the
clear at once as it offers the possibility to decrypt only the necessary parts,
instead of the whole body. The disadvantage is an increase in overhead due to
multiple calls to the decryption and encryption routines.

4 On-demand Decryption Framework

In this section, we introduce our on-demand decryption scheme. The granularity
of this scheme is the function level, meaning that we will decrypt and encrypt
an entire function at a time.

4.1 Basic principle

The scheme relies on two separate techniques, namely integrity checking and
encryption. The techniques from integrity-checking are used to compute the
keys for decryption and encryption. The integrity checking function can be a



www.manaraa.com

checksum function or a hash function. Essentially, it has to map a vector of
bytes, code in this case, to a fixed-length value, in such a way that it is hard to
produce a second image resulting in the same hash.

The basic idea is to apply the integrity checking function h to a function a
to obtain the key for the decryption of another function b. Using the notation
of D for decryption and E for encryption, this results in b = Dh(a)(Eh(a)(b)).
To this end, b needs to have been encrypted with the correct key on beforehand
(i.e. Eh(a)(b), denoted by b̄). We will refer to this scheme as a crypto guard.

We would like the guard to have at least the following properties:

– if one bit is modified in a, then 1 or more bits in b should change (after
decryption); and

– if one bit is modified in b̄, then 1 or more bits should change in b after
decryption.

For the first requirement, a cryptographic function with a as key could be
used. For example, Viega et al. [23] use the stream cipher RC4 where the key
is code of another function. The advantage of an additive stream cipher is that
encryption and decryption are the same computation, thus the same code. It is
also possible to construct stream ciphers out of block ciphers (e.g., AES) using
a suitable mode of operation. For more on the cryptographic properties of these
functions, we refer to [15]. The major disadvantage of these ciphers is that they
are relatively slow for our case, and relatively large as well. However, note that
we still require the integrity-checking function that also serves as a one-way
compression function, because each cipher requires a fixed, limited key size.

From a cryptographic point of view we require a second image resistant hash
function and secure encryption mode with suitable error propagation properties
(e.g., PCBC). However, size and speed of these algorithms is essential for the
overall performance of the protection scheme as its security assumes inlining the
guard code. This results in more code to be hashed and decrypted, and thus a
higher cost. It is also possible to link the hashing itself to other code by using
a keyed hash function, such as HMAC. Other proposals for hash-like functions
and encryption routines are constructions based on T-functions, introduced by
Shamir et al. [11]. These light-weight functions are popular as they have a di-
rect equivalent available in both software and hardware. Nevertheless, it is still
unclear whether constructions based on T-function are cryptographically secure.

As software tamper resistance is typically defined as techniques that make
tampering with code harder, we can illustrate that our crypto guards offer pro-
tection against tampering. Namely, using code of a to decrypt (i.e. deriving a
decryption key from a’s code) could be seen as an implicit way of creating tam-
per resistance; modifying a will result in an incorrect hash value (i.e. encryption
key), and consequently incorrect decryption of b̄.

Furthermore, changing b̄ will result in one or more changes to b; in case of
an additive stream cipher a bit change in the ciphertext will correspond to a bit
change the plaintext at the same location. However, if this plaintext itself is used
as key material in a later stage (e.g, to derive decryption keys for its callees), this



www.manaraa.com

will result in incorrect code. Furthermore, due to the brittleness of binary code
and the denseness of the IA32 instruction set, a single bit flip in the clear code
might change the opcode of an instruction, resulting in an incorrect instruction
to be executed, but also in desynchronizing the next instructions [12], which
most likely will lead to a crashing program.

Another advantage of this scheme is that the key is computed at run time,
which means the key is not hard-coded in the binary and therefore hard to find
through static analysis (e.g., entropy scanning [17]). The main disadvantage is
performance: loading a fixed-length cryptographic key is usually more compact
and faster than computing one at run time, which in our case may involve
computing a hash value.

Although we believe that cryptographic hash functions and ciphers are more
secure, we used a simpler XOR-based scheme – which satisfies our two properties
– to minimize the performance cost in speed and size after embedding the crypto
guards. We therefore do not claim that our encrypted code is cryptographically
secure, but rather sufficiently masked to resist analysis and tampering attacks
in a white-box environment, where the attacker has full privileges.

4.2 A Network of Crypto Guards

With crypto guards as building blocks we can construct a network of code depen-
dencies that make it harder to analyze or modify code statically or dynamically.

A first requirement is protection against static analysis. Therefore, all func-
tions in the binary image, except for the entry function, are encrypted with
unique dynamic keys. We opted to decrypt the functions just before they are
called and to re-encrypt them after they have returned. In this case, only func-
tions on the call stack will be in the clear.

Secondly, as the key for decryption should be fixed, regardless of how the
function was reached, we need to know in advance the state of the code from
which the key is derived (encrypted or in the clear). Many functions have multiple
potential callers. Therefore, we cannot always use the code of the caller to derive
the key. The solution is to use a dominator in the call graph. As a dominator is
by definition on the call stack when the function is called, it is guaranteed to be
in the clear. We have chosen to use the immediate dominator to derive the key.

Note that it is also possible to derive the key of other functions, allowing one
to create schemes which offer delayed failure upon malicious tampering [20]. On
the one hand, this may allow a tampered application to run longer, on the other
hand this does not correlate the moment of failure to the embedded checking or
reaction mechanism.

Thus, a good mode of operation for the encryption (i.e. with error prop-
agation) in combination with our dependency scheme, will propagate bit flips
(triggered by tampering):

– through the modified function due to the mode of operation,
– inheritably from caller to callee according to the call graph due to the de-

pendency scheme.



www.manaraa.com

guard

guard

guard

4

caller
21

3

(a)

3

2

callee

callee

(b)

Fig. 1. (a) Memory layout of function call with calls to a crypto guard prior to the
actual call and after its corresponding return. (b) After inlining the guard code. Note
that the caller will increase in size depending on the size of the guard code.

The latter, however, does not validate for multiple callers due to our relaxation
(using the dominator’s code instead of caller’s to derive the key) or to functions
with no callees. In theory this could be solved by using authenticated encryption
modes, such as EAX [2] or the more efficient OCB [16]. These modes aim to
efficiently offer confidentiality and integrity.

The operation of a function call is illustrated in Fig. 1. It consists of the
following steps:

1. the caller calls a guard to decrypt the callee;
(a) the guard computes a checksum of the immediate dominator of the callee;
(b) the callee is decrypted with the checksum as key;
(c) the guard returns;

2. the caller calls the callee;
3. the callee returns;
4. the caller calls the guard to encrypt the callee;

(a) the guard computes a checksum of the immediate dominator of the callee;
(b) the callee is encrypted with the checksum as key;
(c) the guard returns;



www.manaraa.com

5 Numerical Evaluation

In our experiments we tested 5 benchmark programs out of the SPEC CPU2006
Test Suite [19] on an AMD Sempron 1200 MHz, running GNU/Linux with 1 GB
of RAM. We first measure the impact of bulk encryption. Subsequently, we ap-
ply our on-demand encryption scheme where we protect a maximal number of
functions, such that our scheme can offer tamper-resistance according to the
properties mentioned in Section 4. To insert the guard code we used Diablo [7],
a link-time binary rewriter, allowing us to patch binary code, insert extra en-
cryption functionality, and perform dominator analysis on either the control flow
graph or the function call graph. As we are generating self-modifying code, we
mark all code segments to be readable and writable.

Our current implementation only handles functions which respect the call-
return conventions. Recursive functions (denoted by cycles in the function call
graph) are protected by decrypting ahead, i.e. just before entering a recursive
cycle, one decrypts all functions part of that cycle.

To report the performance cost we define the time cost Ct for a program P
and its protected version P̄ as follows:

Ct(P, P̄ ) =
T (P̄ )
T (P )

where T (X) is the execution time of program X.

5.1 Bulk Decryption

For the bulk decryption we added a decryption routine that is executed prior
to transferring control to the entry point of the program. For simplicity, we
encrypted the entire code section of the binary (including library functions as
Diablo works on statically compiled binaries). The resulting overhead in execu-
tion time is less than 1%.

5.2 On-Demand Decryption

On-demand decryption protects functions by decrypting them just before they
are called and reencrypting them after they have returned. This limits their
exposure in memory. Despite the simplicity of this scheme, a number of issues
need to be addressed. An overview is given below.

Loops. A scheme considering only decryption should not be nested in a loop (un-
less it tests for the state – cleartext or ciphertext). Bulk decryption for example
should happen only once. However, the sooner this decryption is performed, the
longer code will be exposed. As our scheme operates on a function level and a
corresponding function call graph, we do not posses information on loops, unless
derived from further analysis (e.g., via profile information).



www.manaraa.com

f1 f2 f3

f8

f9f6f7

f4 f5

Fig. 2. A partial function call graph containing recursive cycles: {f4, f5}, {f4, f5, f6},
and {f8, f9}. Functions f1, f2, and f3 are the functions giving control to the recursive
cycles after decrypting all functions in the reachable cycles.

Recursion. If a function calls itself (pure recursive call), it should – according
to our scheme definitions – decrypt itself, although it might be in clear already.
Therefore, we suggest decrypting a recursive function only once: namely when
it gets called by another function. We can extend this to recursive cycles, where
a group of functions together form a recursion. In this case, all functions in the
recursive cycle should be decrypted before entering the recursive cycle. Figure 2
illustrates this. For example, before giving control to f8 (via f3), cycles {f8, f9}
and {f4, f5, f6} have to be decrypted. Function f7 can be decrypted (before
calling) in f4 as it will always be re-encrypted (after returning) before f4 calls
it a second time (e.g., in another iteration of the recursion)

Multiple callers. In order to propagate errors through the whole call graph ac-
cording to the call stack, decryption of a callee should depend on the integrity
of all callers. This is not straightforward as we defined our scheme to rely on
cleartext code, but only one of the callers has to be in clear. Cappaert et al. [3]
is possible to decrypt the cleartext code of each caller. However, this requires
O(nd) decryptions (via a guard) where n represents the number of callers and
d the difference in the call graph depth of each encrypted caller relative to the
actual caller. To overcome this overhead we propose to apply a similar strategy
as proposed for recursion, namely to decrypt ahead of the call to the callee.
Thus, to decrypt a function b with multiple callers ai we can decrypt the code
of b before entering one its callers ai. This would only result in O(n) guards but
expose fb’s code a little longer.

In our implementation we rely on the immediate dominator instead of the
actual callers, but we only decrypt the code of b when it is called from one of
its callers ai. The reason is that the dominator is always on the call stack, and
thus in the clear, when a function is reached. This only requires O(n) guards.

Table 1 shows the time cost after applying our on-demand encryption scheme
to 5 benchmark programs out of the SPEC CPU2006 suite. It is clear that,



www.manaraa.com

Table 1. Time cost for on-demand encryption, using our tamper resistance scheme.
This table shows the total number of functions, functions protected with the on-demand
encryption scheme, the time cost, and the number of guard pairs (D and E) in the
binary.

Program Functions Speed cost Number of
name total on-demand Ct guard pairs

mcf 22 20 1.09 28

milc 159 146 8.17 543

hmmer 234 184 3.20 873

lbm 19 12 1.00 20

sphinx livepretend 210 192 6.65 1277

depending on the nature of the program (number of calls, function size, etc.),
the impact of our scheme is moderate for some, while expensive for others.

5.3 Combined Scheme

To address the trade-off between performance and protection we propose a com-
bined scheme. This scheme combines the merits of bulk encryption and the
tamper-resistant properties of our on-demand decryption scheme. To decide
whether a function is a good candidate for on-demand decryption, we define a
heuristic hotness that is correlated to the frequency a function is called, namely:

Definition 1. A function is hot when it is part of the set of most frequently
called functions that together contribute to K% of all function calls.

The call information was collected by analyzing dynamic profile information
gathered by Diablo. This definition can be expressed by the following formula:

f is hot ↔ calls(f) ≥ threshold

with

threshold = calls(fi) |
i∑

j=1

calls(fi) > K

n∑

j=1

calls(fi)

assuming n functions, ordered descending according to the number of times a
function fi is called, i.e. calls(fi).

When a function is hot, it is not selected for on demand encryption but pro-
tected by bulk encryption. Table 2 contains the time costs of the same benchmark
programs tested when we apply the combined scheme. It is clear that defining a
hot threshold reduces the overhead introduced by our guards. We believe that
further fine-tuning of our threshold (e.g., increasing the K factor) will improve
the performance of all programs.



www.manaraa.com

Table 2. Time cost for our combined scheme, combining on-demand encryption with
bulk encryption for K = 0.90.

Program Functions Speed cost Number of
name total on-demand Ct guard pairs

mcf 22 19 1.04 24

milc 159 135 1.95 486

hmmer 234 183 1.15 862

lbm 19 8 1.00 17

sphinx livepretend 210 181 1.72 1257

Furthermore, we also would like to stress that we are aiming to protect all
functions at all times, while most other software protection techniques focus on
the critical parts only, or all functions but not at all times (e.g., bulk encryption).

6 Attacks and Improvements

6.1 White-box Attacks

Our guards, which modify code depending on other code, offer several advantages
over the software guards proposed by Chang and Attalah [4] and the those from
Horne et al. [9]:

Confidentiality. As long as code remains encrypted in memory it is protected
against dynamic analysis attacks. With a good scheme it is feasible to ensure
only a minimal number of code blocks are present in memory in decrypted form;

Tamper resistance Together with a good dependency scheme, our guards offer
protection against any tampering attempt. If a function is tampered with stat-
ically or even dynamically, the program will generate corrupted code at a later
stage and thus will it most likely eventually crash due to illegal instructions.
Furthermore, if the modification generates executable code, this change will be
propagated to other functions, resulting in erroneous code.

Resistance to a hardware-assisted circumvention attack. This attack, proposed
by van Oorschot et al. [22], exploits differences between data reads and instruc-
tion fetches to bypass self-checksumming code. The attack consists of duplicating
each memory page, one page containing the original code, while another contains
tampered code. A modified kernel intercepts every data read and redirects it to
the page containing the original code, while the code that gets executed is the
modified one. However, more recent work of Giffin et al. [8] illustrates that self-
modifying code can detect such an attack and thus protect against it. As our
work focusses on self-encrypting code, a type of self-modifying code, these results
also apply to our techniques.



www.manaraa.com

Nevertheless, in a white-box environment, an attacker has full privileges.
For example, he or she can debug and emulate the program at will. This implies
that our dynamically computed keys will be visible at some moment in time. The
same counts for addresses of the decryption areas, etc. Therefore, we propose to
protect guards in a diversified manner by obfuscation techniques [24] such that
not all of them can be broken in an automated way. Another option is hardware
support, such as cryptographic co-processors [21]. However, this usually comes
a a higher cost.

6.2 Inlining Guard Code

Embedding a single decryption routine in a binary is not a secure stand-alone
protection technique. It should always be combined with other techniques such
as obfuscation or self-checking code. The strength of our scheme is a direct
consequence of its distributed nature, i.e. a network of guards (as explained in
Section 4.2). If implementation of the dependency scheme consists of a single
instance of the guard code and numerous calls to it, an attacker can modify the
guard or crypto code to write all decrypted content to another file or memory
region. To avoid that an attacker only needs to attack this single instance of
the guard code, inlining the entire guard could preclude this attack and force
an attacker to modify all instances of the guard code at run time, as all nested
guard code will initially be encrypted. This has been illustrated in Figure 1(b).
However, a disadvantage of this inlining is code expansion. Compact encryption
routines might keep the spacial cost relatively low, but implementations of secure
cryptographic functions are not always small.

Even though our initial results illustrated in Table 1 and Table 2 were per-
formed by inlining calls, we expect similar performance results as our guard code
in its most compact form does not exceed 40 bytes, while the calls we used for
testing are 47 bytes long (pushing and popping arguments included).

6.3 Increasing Granularity and Scheme Extensions

Our scheme is built on top of static call graph information and therefore uses
functions as building blocks. If one increases the granularity, and encrypts parts
of functions, the guards can be integrated into the program’s control flow which
will further complicate analyzing the network of guards especially when inlined.
However, we believe that such a fine-grained structure will induce much more
overhead. The code blocks to be encrypted will be much smaller than the added
code. Furthermore, more guards will be required to cover the whole program
code. Hence it is important to trade-off the use of these guards, focusing instead
on critical parts of the program and avoiding ‘hot spots’ such as frequently
executed code.

As implied by Figure 1, the caller remains in cleartext as long as it is part
of the call stack. Another extension involves encrypting the caller of a callee
when the callee executes. This corresponds to protecting functions on the call
stack. As such, only the executing function will be in cleartext. This extension



www.manaraa.com

would double the number of guards per original function call inducing consider-
able overhead, see also [3]. However, using dedicated heuristics, such as hotness,
would help us make a better trade-off between on-demand encryption and bulk
encryption.

7 Conclusions

This paper presents a new type of software guards which are able to encipher
code at run time, relying on other code as key information. This technique offers
confidentiality of code, a property that previously proposed software guards did
not offer yet. As code is used as a key to decrypt other code, it becomes possible
to create code dependencies which make the program more tamper-resistant.
We propose a scheme that makes code depending on one of its dominators.
We compare our approach to the less secure bulk encryption. We introduce a
heuristic based on the frequency that a particular function is called to reduce
overhead. To validate our claims we implemented our scheme with Diablo, a
binary rewriter, and applied it on 5 programs of the SPEC CPU2006 benchmarks
suite.

Acknowledgements

This work was supported in part by the Research Foundation - Flanders (FWO
Vlaanderen), the Institute for the Promotion of Innovation through Science
and Technology in Flanders (IWT Vlaanderen), the Concerted Research Action
(GOA) Ambiorics 2005/11 of the Flemish Government, and by the BCRYPT
Interuniversity Attraction Pole (IAP VI/26) programme of the Belgian govern-
ment. We would also like to thank Elena Andreeva for her contributions.

References

1. D. Aucsmith. Tamper resistant software: an implementation. Information Hiding,
1174:317–333, 1996.

2. M. Bellare, P. Rogaway, and D. Wagner. The eax mode of operation: A two-
pass authenticated-encryption scheme optimized for simplicity and efficiency. Fast
Software Encryption 2004, 3017:389–407, 2004.

3. J. Cappaert, N. Kisserli, D. Schellekens, and B. Preneel. Self-encrypting code to
protect against analysis and tampering. 1st Benelux Workshop on Information
and System Security (WISSec 2006), 2006.

4. H. Chang and M. J. Atallah. Protecting software codes by guards. Workshop on
Digital Rights Managment (DRM 2001), 2320:160–175, 2001.

5. Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha, and M. Jakubowski. Oblivious
hashing: a stealthy software integrity verification primitive. Information Hiding,
2578:400–414, 2002.

6. C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating transforma-
tions. Technical Report #148, Department of Computer Science, The University
of Auckland, 1997.



www.manaraa.com

7. B. De Sutter, L. Van Put, D. Chanet, B. De Bus, and K. De Bosschere. Link-time
compaction and optimization of arm executables. ACM Transactions on Embedded
Computing Systems, 6(1), 2007.

8. J. T. Giffin, M. Christodorescu, and L. Kruger. Strengthening software self-
checksumming via self-modifying code. In Proceedings of the 21st Annual Com-
puter Security Applications Conference (ACSA05), pages 23–32. IEEE Computer
Society, 2005.

9. B. Horne, L. R. Matheson, C. Sheehan, and R. E. Tarjan. Dynamic Self-Checking
Techniques for Improved Tamper Resistance. 2320:141–159, 2001.

10. M. Howard and D. C. LeBlanc. Writing Secure Code, Second Edition. Microsoft
Press, 2002.

11. A. Klimov and A. Shamir. Cryptographic applications of T-functions, 2003.
12. C. Linn and S. Debray. Obfuscation of executable code to improve resistance

to static disassembly. In CCS ’03: Proceedings of the 10th ACM conference on
Computer and communications security, pages 290–299, 2003.

13. D. Low. Java Control Flow Obfuscation. Master’s thesis, University of Auckland,
New Zealand, 1998.

14. N. Mehta and S. Clowes. Shiva – ELF Executable Encryptor. Secure Reality.
http://www.securereality.com.au/.

15. A. Menez, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
CRC Press, Inc., 1997.

16. P. Rogaway, M. Bellare, and J. Black. Ocb: A block-cipher mode of operation for
efficient authenticated encryption. ACM Transactions on Information and System
Security (TISSEC), 6(3):365–403, 2003.

17. A. Shamir and N. van Someren. Playing “Hide and Seek” with Stored Keys.
Financial Cryptography ’99, 1648:118–124, 1999.

18. Y. Song, M. E. Locasto, A. Stavrou, A. D. Keromytis, and S. J. Stolfo. On the
infeasibility of modeling polymorphic shellcode. In Proceedings of the 14th ACM
conference on Computer and communications security (CCS07), pages 541–551.
ACM, 2007.

19. SPEC – Standard Performance Evaluation Corporation. SPEC CPU2006.
http://www.spec.org/cpu2006/.

20. G. Tan, Y. Chen, and M. H. Jakubowski. Delayed and controlled failures in tamper-
resistant software. In Information Hiding (IH07), volume 4437 of Lecture Notes in
Computer Science, pages 216–231, 2007.

21. J. D. Tygar and B. Yee. Dyad: A system for using physically secure coprocessors.
In IP Workshop Proceedings, 1994.

22. P. C. van Oorschot, A. Somayaji, and G. Wurster. Hardware-assisted circumvention
of self-hashing software tamper resistance. IEEE Transactions on Dependable and
Secure Computing, 2(2):82–92, 2005.

23. J. Viega and M. Messier. Secure Programming Cookbook for C and C++. O’Reilly
Media, Inc., 2003.

24. G. Wroblewski. General Method of Program Code Obfuscation. PhD thesis, Wro-
claw University of Technology, Institute of Engineering Cybernetics, 2002.


